Skip to main content

Mach. Learn. Knowl. Extr., Volume 6, Issue 1 (March 2024) Table of Contents

cover img journal-logo
Facebook Linkedin Twitter
An Ensemble-Based Multi-Classification ML Classifier for Detecting Cyberbullying
Mach. Learn. Knowl. Extr., Volume 6, Issue 1 (March 2024)
Table of Contents
Highlights
Read our recent reviews collection here.
Read our Most Cited & Viewed papers here.

Cover Story

Abdulkarim Faraj Alqahtani and Mohammad Ilyas
Mach. Learn. Knowl. Extr. 2024, 6(1), 156-170; DOI: 10.3390/make6010009

Sections
Data

Learning

Visualization

Privacy

Network

General

Special Issues Open for Submissions
Topical Collections (without Deadline)


Data
Mohammadali Fallahian, Mohsen Dorodchi and Kyle Kreth
Mach. Learn. Knowl. Extr. 2024, 6(1), 171-198; DOI: 10.3390/make6010010

Kuangsheng Cai, Zugang Chen, Hengliang Guo, Shaohua Wang, Guoqing Li, Jing Li, Feng Chen and Hang Feng
Mach. Learn. Knowl. Extr. 2024, 6(1), 41-52; DOI: 10.3390/make6010003

Jorge Blanco Prieto, Marina Ferreras González, Steven Van Vaerenbergh and Oscar Jesús Cosido Cobos
Mach. Learn. Knowl. Extr. 2024, 6(1), 78-97; DOI: 10.3390/make6010005

Liang Luo and George K. Stylios
Mach. Learn. Knowl. Extr. 2024, 6(1), 215-232; DOI: 10.3390/make6010012


Learning
Sophie Zentner, Alberto Barradas Chacon and Selina C. Wriessnegger
Mach. Learn. Knowl. Extr. 2024, 6(1), 199-214; DOI: 10.3390/make6010011

Nhut Huynh and Kim-Doang Nguyen
Mach. Learn. Knowl. Extr. 2024, 6(1), 259-282; DOI: 10.3390/make6010014

Mailson Ribeiro Santos, Affonso Guedes and Ignacio Sanchez-Gendriz
Mach. Learn. Knowl. Extr. 2024, 6(1), 316-341; DOI: 10.3390/make6010016

Yuxin Cong, Toshiyuki Motohashi, Koki Nakao and Shinya Inazumi
Mach. Learn. Knowl. Extr. 2024, 6(1), 402-419; DOI: 10.3390/make6010020

Enqi Ma and Zbigniew J. Kabala
Mach. Learn. Knowl. Extr. 2024, 6(1), 506-553; DOI: 10.3390/make6010025

Cezary Maszczyk, Marek Sikora and Łukasz Wróbel
Mach. Learn. Knowl. Extr. 2024, 6(1), 554-579; DOI: 10.3390/make6010026


Soma Onishi, Masahiro Nishimura, Ryota Fujimura and Yoichi Hayashi
Mach. Learn. Knowl. Extr. 2024, 6(1), 658-678; DOI: 10.3390/make6010031

Leandra Lukomski, Juan Pisula, Naita Wirsik, Alexander Damanakis, Jin-On Jung, Karl Knipper, Rabi Datta, Wolfgang Schröder, Florian Gebauer, Thomas Schmidt, Alexander Quaas, Katarzyna Bozek, Christiane Bruns and Felix Popp
Mach. Learn. Knowl. Extr. 2024, 6(1), 679-698; DOI: 10.3390/make6010032

Shira Nemirovsky-Rotman and Eyal Bercovich
Mach. Learn. Knowl. Extr. 2024, 6(1), 385-401; DOI: 10.3390/make6010019

Mohammed G. Alsubaie, Suhuai Luo and Kamran Shaukat
Mach. Learn. Knowl. Extr. 2024, 6(1), 464-505; DOI: 10.3390/make6010024

Visualization
Subhayu Dutta, Subhrangshu Adhikary and Ashutosh Dhar Dwivedi
Mach. Learn. Knowl. Extr. 2024, 6(1), 448-463; DOI: 10.3390/make6010023

Privacy
Mustafa Pamuk, Matthias Schumann and Robert C. Nickerson
Mach. Learn. Knowl. Extr. 2024, 6(1), 143-155; DOI: 10.3390/make6010008

Ekaterina Novozhilova, Kate Mays, Sejin Paik and James E. Katz
Mach. Learn. Knowl. Extr. 2024, 6(1), 342-366; DOI: 10.3390/make6010017

Network
Foziya Ahmed Mohammed, Kula Kekeba Tune, Beakal Gizachew Assefa, Marti Jett and Seid Muhie
Mach. Learn. Knowl. Extr. 2024, 6(1), 699-735; DOI: 10.3390/make6010033

Didier Gohourou and Kazuhiro Kuwabara
Mach. Learn. Knowl. Extr. 2024, 6(1), 126-142; DOI: 10.3390/make6010007

Fouad Trad and Ali Chehab
Mach. Learn. Knowl. Extr. 2024, 6(1), 367-384; DOI: 10.3390/make6010018

General
Audris Arzovs, Janis Judvaitis, Krisjanis Nesenbergs and Leo Selavo
Mach. Learn. Knowl. Extr. 2024, 6(1), 283-315; DOI: 10.3390/make6010015

Devang Mehta and Noah Klarmann
Mach. Learn. Knowl. Extr. 2024, 6(1), 1-17; DOI: 10.3390/make6010001

Abhijeet Kumar, Anirban Guha and Sauvik Banerjee
Mach. Learn. Knowl. Extr. 2024, 6(1), 18-40; DOI: 10.3390/make6010002

Adnan Alagic, Natasa Zivic, Esad Kadusic, Dzenan Hamzic, Narcisa Hadzajlic, Mejra Dizdarevic and Elmedin Selmanovic
Mach. Learn. Knowl. Extr. 2024, 6(1), 53-77; DOI: 10.3390/make6010004

Jennifer Werner, Dimitri Nowak, Franziska Hunger, Tomas Johnson, Andreas Mark, Alexander Gösta and Fredrik Edelvik
Mach. Learn. Knowl. Extr. 2024, 6(1), 98-125; DOI: 10.3390/make6010006

Musacchio Nicoletta, Rita Zilich, Davide Masi, Fabio Baccetti, Besmir Nreu, Carlo Bruno Giorda, Giacomo Guaita, Lelio Morviducci, Marco Muselli, Alessandro Ozzello, Federico Pisani, Paola Ponzani, Antonio Rossi, Pierluigi Santin, Damiano Verda, Graziano Di Cianni and Riccardo Candido
Mach. Learn. Knowl. Extr. 2024, 6(1), 420-434; DOI: 10.3390/make6010021

Sabrina Djeradi, Tahar Dahame, Mohamed Abdelilah Fadla, Bachir Bentria, Mohammed Benali Kanoun and Souraya Goumri-Said
Mach. Learn. Knowl. Extr. 2024, 6(1), 435-447; DOI: 10.3390/make6010022

Danial Hooshyar, Roger Azevedo and Yeongwook Yang
Mach. Learn. Knowl. Extr. 2024, 6(1), 593-618; DOI: 10.3390/make6010028

Loay Hassan, Mohamed Abdel-Nasser, Adel Saleh and Domenec Puig
Mach. Learn. Knowl. Extr. 2024, 6(1), 619-641; DOI: 10.3390/make6010029

Heesung Shim, Jonathan E. Allen and W. F. Drew Bennett
Mach. Learn. Knowl. Extr. 2024, 6(1), 642-657; DOI: 10.3390/make6010030

Special Issues Open for Submissions
Sustainable Applications for Machine Learning
(Deadline: 2 July 2024)

Large Language Models: Methods and Applications
(Deadline: 31 July 2024)

To access the full list of Special Issues, please click here
Topical Collection (without Deadline)
Extravaganza Feature Papers on Hot Topics in Machine Learning and Knowledge Extraction

To access the full list of Topical Collections, please click here

Manage your journal subscriptions | Unsubscribe

MDPI
Postfach, CH-4020 Basel, Switzerland
Office: St. Alban-Anlage 66, CH-4052 Basel, Switzerland
Tel. +41 61 683 77 34
www.mdpi.com
logo
.

Comments

Popular posts from this blog

CNC program transfer through electronic media.

The transfer of CNC (Computer Numerical Control) programs to machines through electronic media is a critical aspect of modern manufacturing, enabling efficiency, accuracy, and automation. Over the years, various electronic methods have evolved, each with its own advantages and applications.   Here are the primary means of CNC program transfer through electronic media: 1. RS-232 Serial Communication (DNC - Direct Numerical Control) The RS-232 serial interface is historically the most common method for connecting CNC machines to external devices, such as computers. Functionality: Program Transfer: CNC programs (G-code) are sent character by character over a serial cable (typically a DB9 or DB25 connector). Drip Feeding: For older CNC machines with limited internal memory, RS-232 is used for "drip feeding" or "Direct Numerical Control (DNC)." In this mode, the program is stored on a computer, and blocks of the program are sent to the CNC machine's buffer as...

Check out some CNC projects from our users

SHOP NOW Check out some CNC projects from our users We've been talking for a few days about the terms and technology behind CNC and it's about time to show you some projects that our customers have made. You can find our projects page at:  http://carbide3d.com/projects/ Every project on there was made on a Shapeoko 3 or Nomad Pro, so these are exactly the kinds of projects that you can make in your home, garage, shop or office. If you have any questions just hit reply and ask us. -Edward   No longer want to receive these emails? Unsubscribe . Ca...

Discover the Latest at Machines (April 2024)

To display this email in a browser, please click here IMPACT FACTOR 2.6 ...